jueves, 30 de octubre de 2008

EL DISCO DURO



El disco duro es un dispositivo de almacenamiento no volátil, es decir conserva la información que le ha sido almacenada de forma correcta aun con la perdida de energía, emplea un sistema de grabación magnética digital, es donde en la mayoría de los casos se encuentra almacenado el sistema operativo de la computadora. En este tipo de disco se encuentra dentro de la carcasa una serie de platos metálicos apilados girando a gran velocidad. Sobre estos platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares a la hora de comunicar un disco duro con la computadora. Existen distintos tipos de interfaces las más comunes son: Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
Tal y como sale de fábrica, el disco duro no puede ser utilizado por un sistema operativo. Antes tenemos que definir en él un formato de bajo nivel, una o más particiones y luego hemos de darles un formato que pueda ser entendido por nuestro sistema.
También existe otro tipo de discos denominados de estado sólido que utilizan cierto tipo de memorias construidas con semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limitaba a las supercomputadoras, por su elevado precio, aunque hoy en día ya se puede encontrar en el mercado unidades mucho más económicas de baja capacidad (hasta 64 GB) para el uso en computadoras personales (sobre todo portátiles). Así, el caché de pista es una memoria de estado sólido, tipo memoria RAM, dentro de un disco duro de estado sólido.

HISTORIA.-El primer disco duro 1956 fue el IBM 3501, con una capacidad alta de concentrar los bytes de manera que la placa base se convierte en algo más. Entre el primer disco duro, el Ramac I, introducido por IBM en 1956, y los minúsculos discos duros actuales, la evolución ha sido hasta más dramática que en el caso de la densidad creciente de los transistores, gobernada por la ley de Moore.
El Ramac I pesaba una tonelada y su capacidad era de 5 MB. Más grande que una nevera actual, este disco duro trabajaba todavía con válvulas al vacío y requería una consola separada para su manejo.
Su gran mérito consistía en el que el tiempo requerido para el acceso a un dato no dependía de la ubicación física del mismo. En las cintas magnéticas, en cambio, para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado.
La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos por años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.
El mérito del francés Albert Fert y al alemán Peter Grunberg (ambos premio Nobel de Física, por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como magnetorresistencia gigante, permitió construir cabezales de lectura y grabación más sensitivos, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento vigoroso en la capacidad de almacenamiento en los discos duros, que se elevó a 60% anual en la década de 1990.
En 1992, los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años después habían superado los 40.000 MB o 40 gigabytes (GB). En la actualidad, ya nos acercamos al uso cotidiano de los discos duros con más de un terabyte (TB) o millón de megabytes.
ESTRUCTURA FISICA.-Dentro de un disco duro hay varios platos (entre 2 y 4), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros) ó 3 millonésimas de milímetro. Si alguna llega a tocarlo, causaría muchos daños en el disco, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.500 revoluciones por minuto se mueve a 120 km/h en el borde).

DIRECCIONAMIENTO.-Hay varios conceptos para referirse a zonas del disco:
Plato: Cada uno de los discos que hay dentro del disco duro.
Cara: Cada uno de los dos lados de un plato
Cabeza: Número de cabezales;
Pista: Una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
Cilindro: Conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
Sector : Cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y usa más eficientemente el disco duro.
El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Este es el que actualmente se usa.
Si hablamos de disco rígido podemos citar a los distintos tipos de conexión que poseen los mismos con la placa madre, es decir pueden ser SATA, IDE o SCSI.
IDE: Integrated Device Electronics, "Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta hace bien poco, el estándar principal por su versatilidad y relación calidad/precio.
SCSI: Son discos duros de gran capacidad de almacenamiento (desde 5 GB hasta 23 GB). Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 mseg y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2).
Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que los vuelve más rápidos.
SATA (Serial ATA): Nuevo estándar de conexión que utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. En la actualidad hay dos versiones, SATA 1 de hasta 1.5 Gb/s (150 MB/s) y SATA 2 de hasta 3.0 Gb/s (300 MB/s) de velocidad de transferencia.

ESTRUCTURA LOGICA.-Dentro del disco se encuentran:
El Master Boot Record (en el sector de arranque), que contiene la tabla de particiones.
Las particiones, necesarias para poder colocar los sistemas de archivos.

FUNCIONAMIENTO MECANICO.-

Un disco duro suele tener:
Platos en donde se graban los datos,
Cabezal de lectura/escritura,
Motor que hace girar los platos,
Electroimán que mueve el cabezal,
circuito electrónico de control, que incluye: interfaz con la computadora, memoria caché,
Bolsita desecante (gel de sílice) para evitar la humedad,
Caja, que ha de proteger de la suciedad (aunque a veces no está al vacío)
Tornillos, a menudo especiales.

CARACTERISTICAS DE UN DISCO DURO.-Las características que se deben tener en cuenta en un disco duro son:
Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista) y la Latencia media (situarse en el sector).
Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja esta situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
Otras características son:
Caché de pista: Es una memoria tipo RAM dentro del disco duro. Los discos duros de estado sólido utilizan cierto tipo de memorias construidas con semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limita a las supercomputadoras, por su elevado precio.
Interfaz: Medio de comunicación entre el disco duro y la computadora. Puede ser IDE/ATA, SCSI, SATA, USB, Firewire, SAS
Landz: Zona sobre las que aterrizan las cabezas una vez apagada la computadora.

PRESENTE Y FUTURO.-Actualmente la nueva generación de discos duros utilizan la tecnología de grabación perpendicular (PMR), la cual permite mayor densidad de almacenamiento. También existen discos llamados "Ecológicos" (GP - Green Power), lo cuales hacen un uso más eficiente de la energía. Se está empezando a observar que la Unidad de estado sólido es posible que termine sustituyendo al disco duro a largo plazo.

FABRICANTES.-
Western Digital
Seagate
Maxtor que pasa a ser de Seagate.
Samsung
Hitachi
Fujitsu
Quantum Corp.
ToshibaE

http://es.wikipedia.org/wiki/Disco_duro

AMD vs INTEL



La arena de lucha en el mundo digital se reduce a dos nombres: Intel y AMD. Hace más de 30 años, ambas compañías se disputan la cuota del mercado de microprocesadores para ordenadores de todo tipo.
Si bien hace casi una década, los expertos en tecnología, destacaron la capacidad de innovación de los productos de AMD, en las ventas no se vislumbran aumentos para la empresa, ya que Intel sigue a la cabeza con un poco más del 80% de la cuota de mercado, mientras que AMD llega apenas al 16% del total.

En la última década, Intel parece haberse quedado con mínimas innovaciones en sus versiones de Pentium 4, pero el ardid que la mantiene como la líder del mercado está en su agresiva campaña de ventas y mercadotecnia. Para este nuevo año, Intel lanzará nuevos descuentos en Pentium D 900 (entre el 10% y el 20%), y Pentium 4 (entre el 10% y el 70%) y Core 2 Duo.
Además se prevé una demanda por parte AMD, acusándola de prácticas monopólicas, ya que según dicen, Intel aprovecha su posición dominante en el mercado mundial de microprocesadores para castigar a aquellos fabricantes de ordenadores que llegan a utilizar más de un 20% de chips de AMD en sus productos.
Lo cierto es que la guerra aún no se ha definido y bien vale un tanto de historia de ambas empresas para conocer qué nos espera en materia de microprocesadores y computadoras en este nuevo milenio.
EL PODER DE INTEL
Desde la década del 90, la gran mayoría de los ordenadores personales tiene en su gabinete un sticker con la leyenda “Intel Inside”, el famoso spot de la empresa que nos anuncia su liderazgo en el mercado de procesadores.
Lo cierto es que Intel Corporation es una empresa multinacional que fabrica microprocesadores y circuitos integrados especializados, como circuitos integrados auxiliares para placas base de ordenador y otros dispositivos electrónicos.
Nació en 1968, bajo el mando de Gordon E. Moore y Robert Noyce y un grupo de 12 trabajadores. En 1971, llegó el primer microprocesador de Intel, el Intel 4004, que fue creado para facilitar el diseño de la calculadora programable de una empresa japonesa, llamada Busicom.


El ingeniero Ted Hoff, uno de los doce científicos de Intel, diseñó un chip con una memoria que podía hacer varias acciones, padre del microprocesador. Este primer empuje tecnológico, los llevó al microprocesador 4004, que estaba compuesto por cuatro de estos chips y otros dos chips de memoria.
Este conjunto de 2.300 transistores, que ejecutaba 60.000 operaciones por segundo, se puso a la venta por 200 dólares. Más que rápido, Intel puso a la venta el 8008, capaz de procesar el doble de datos, inundando los aparatos de aeropuertos, restaurantes, salones recreativos, hospitales, gasolineras.
Para mediados de la década del 70, a Intel le propusieron incluir un teclado y monitor al chip 8008, permitiéndoles incursionar en el mundo de las computadoras personales, pero los directivos rechazaron la propuesta, marcando así su destino de productores de microprocesadores.
Para principios del ´80 vino la primera Personal Computer de mano de IBM, con procesador 8088, con un chip de 8 bits trabajando a 4,77 MHz.
Del 8088 salieron, en los años siguientes, el 80286 y el 80386, que luego serían conocidos como los “286” y “386”. Recuerdo cuando mi padre, allá por 1987, vino a casa con su nuevo juguete: una XT 286, con monitor monocromo y que corría DOS, todo un lujo para época en Latinoamérica.
A partir de estos dos microprocesadores de 32 bits, el camino de innovaciones de la casa Intel fue vertiginoso, hasta que en la década del 90 llegaron a la flamante línea de Pentium. Como decíamos antes, Intel lidera el mercado de ventas y ofrece a los consumidores los siguientes productos:
Procesador Intel® Core™2 Quad Q6600
Procesador Intel® Core™2 Extreme
Procesador Intel® Core™2 Quad
Procesador Intel® Pentium® Extreme Edition
Procesador Intel® Pentium® D
Procesador Intel® Pentium® 4 Extreme Edition compatible con la tecnología Hyper-Threading
Procesador Intel® Celeron® D
Procesador Intel® Core™2 Duo para equipos portátiles
Procesador Celeron® M 450
Procesador Intel® Celeron® M
Procesador Intel® Pentium® M 780
Procesador Intel® Pentium® M
Procesador Intel® Pentium® 4 para equipos portátiles compatible con la tecnología Hyper-Threading
Además, a lo largo de estos 30 años, ha sido el principal proveedor de procesadores para Compaq y Dell. En junio de 2005 Intel firmó un acuerdo con Apple Computer, por el cual proveerá procesadores para los ordenadores Apple.
Fue así como para el 2006, los nuevos modelos de Apple, tanto para escritorio como portátiles, llevan un cerebro de Intel Core Duo.
LA SOMBRA DE AMD
De alguna forma, Advanced Micro Devices, Inc, más conocida como AMD, se mantuvo a la sombra de los microprocesadores de Intel.
La compañía nació un año después que Intel, en 1969, lo que la convierte en la segunda compañía mundial productora de microprocesadores x86-compatibles y uno de los más importantes fabricantes de gpu’s, chipsets y otros dispositivos semiconductores.
Actualmente la empresa atraviesa el proceso de reestructuración, iniciado en el 2006, y lanzó al mercado el primer procesador de 64 bits, ganando en tecnología a Intel.
AMD es un empresa con un perfil mucho más bajo que Intel, que si bien no ha invertido millones en mercadotecnia y publicidad, se destaca por “adoptar un compromiso hacia una innovación auténticamente útil para los clientes, anteponiendo las verdaderas necesidades de las personas a la elaboración técnica”, según palabras de Jerry Sanders, fundador de AMD.
Durante mucho tiempo AMD trabajó en la fabricación de sus procesadores un tanto a la sombra de la creación de Intel, ya que copiaba el microcódigo de los 8088 y 8086. Desde 1986 el acuerdo para fabricación y compartimiento de información sobre los microprocesadores de tecnología Intel se rompió, dando paso a una serie de demandas en la que AMD exigía a Intel cumplir con el trato.
Recién en 1999, AMD lanza al mercado su primer microprocesador, el K5, en una clara alusión a la Kryptonite, el único material posible de vencer al Superman de Intel. Pero deberían pasar muchos años y la compra de tecnología de empresas como Geode, ATI y NexGen, para igualar la compatibilidad y los buenos precios de los procesadores de Intel.
En la historia de AMD hubo muchas innovaciones y cambios para ese primer procesador K5, se puede decir que fue una de las empresas que más invirtió en investigaciones y desarrollo de la industria del microprocesador. Hoy ofrece un abanico de soluciones en todos los ramos de microprocesadores, tarjetas de video y chipsets. Además es el mayor productor mundial de chips para TV, consolas y celulares en el mundo.
Mejorada la arquitectura del K7, el nuevo procesador Athlon 64 FX, el primero del mundo de 64 bits para PC compatible con Windows, ofrece las mayores prestaciones en 32 bits para las aplicaciones de hoy en día y la potencia de 64 bits para la siguiente generación de software; este chip sin duda incrementará la competencia con Intel.
Cuentan los que saben, que AMD se viene con varios proyectos en este nuevo milenio, uno de ellos se llama Fusión, que consiste en implantar las capacidades de las gpu’s en el mismo chip de silicio que los microprocesadores y así dotarlos de poder extra en aplicaciones de gráficos.
Otra de las grandes apuestas de la compañía se verá en lo que llaman la Iniciativa 50X15, una cruzada para que la mitad de la población cuente con la capacidad de conectarse a Internet para el 2015; esto se lograría a través de concursos entre universidades de varios países donde se desarrollan las mejores soluciones para cada región del planeta basadas en la tecnología de AMD.
Entre los productos que hoy ofrece ADM se encuentran:
Procesador AMD Athlon™ 64 FX
Procesador AMD Athlon™ 64 X2 de doble núcleo para ordenadores de escritorio
Procesador AMD Athlon™ 64 para equipos de sobremesa
Tecnología Mobile AMD Turion™ 64
Tecnología Mobile AMD Turion™ 64 X2 de doble núcleo
AMD64 Dual-Core
Luego de un franco liderazgo de Intel, las proyecciones para el 2007, dicen que por fin este año será el de AMD con los microprocesadores Rev G, de 65 nanómetros frente a los de 45 de Intel.
Las sorpresas para el mundo de los microprocesadores están a la vista del cliente, y la lucha por el mercado, es una agonal imparable entre ambas empresas. Quedará en manos de los gurú de los videojuegos la prueba de rendimiento de los procesadores de AMD e Intel, así como la poderosa cuota de confianza que el mercado depare para cada compañía.
http://www.maestrosdelweb.com/actualidad/intelamd/

lunes, 20 de octubre de 2008

TARJETAS MADRE



El mainboard también conocido como motherboard, placa madre o base es uno de los componentes básicos por no decir el más relevante en una PC. Su función es vital y gran parte de la calidad del funcionamiento general está determinada por este componente. Su función es administrar el cpu e interconectar los distintos periféricos.
Así como el CPU es el cerebro, la placa madre es el sistema nervioso.

AT (12 × 11"–13" ó 305 × 279–330 mm).-El factor de forma AT (Advanced Technology) es el formato de placa base empleado por el IBM AT y sus clones en formato sobremesa completo y torre completo. Su tamaño es de 12 pulgadas (305 mm) de ancho x 11-13 pulgadas de profundo. Fue lanzado al mercado en 1984.
Su gran tamaño dificultaba la introducción de nuevas unidades de disco. Además su conector con la fuente de alimentación inducía fácilmente al error siendo numerosos los casos de gente que quemaba la placa al conectar indebidamente los dos juegos de cables (pese a contar con un código de color para situar 4 cables negros en la zona central). El conector de teclado es el mismo DIN 5 del IBM PC
En 1985 IBM introdujo Baby-AT, más pequeño y barato que AT. Pronto todos los fabricantes cambiaron a esta variante.
En 1997 ATX dejó atrás a AT, pasando a ser el nuevo estándar más popular.
Baby-AT (8.5" × 10"–13" ó 216 mm × 254-330 mm) .-Baby AT es el formato de placa base (factor de forma) que predominó en el mercado de las computadoras personales desde la serie de procesadores Intel 80286 hasta la introducción de los Pentium. Es una variante del factor de forma AT, aunque más pequeña (de ahí baby (bebé en inglés) AT). Define un tamaño para la placa base de 220 X 330 milímetros.
Fue introducida en el mercado en 1985 por IBM, y al ser esta variante más pequeña y barata que AT, pronto todos los fabricantes cambiaron a ella y se mantuvo como estandar en las computadoras personales hasta que fue reemplazado por el factor de forma ATX a partir de 1995. El pequeño tamaño, que había sido el principal motivo de su éxito, fue también lo que motivó su reemplazo, puesto que a medida que aumentaba la capacidad de trabajo de los microprocesadores y su generación de calor, la proximidad de los componentes incrementaba excesivamente la temperatura.
Una característica importante de este factor de forma es que las placas base construidas según este diseño fueron las primeras en incluir conectores para distintos puertos (paralelo, serial, etcétera) integrados en su parte trasera y conectados internamente.


ATX (Intel 1996; 12" × 9.6" ó 305 mm × 244 mm).-El estándar ATX (Advanced Technology Extended) fue creado por Intel en 1995. Fue el primer cambio importante en muchos años en el formato de las placas base de PC. ATX reemplazó completamente al antiguo estándar AT, convirtiéndose en el factor de forma estándar de los equipos nuevos. ATX resuelve muchos de los problemas que el estándar Baby-AT (la variante más común del AT) causaba a los fabricantes de sistemas. Otros estándares con placas más pequeñas (incluyendo microATX, FlexATX y mini-ITX) mantienen la distribución básica original pero con un tamaño de la placa y un número de slots de expansión menor. En 2003, Intel anunció un nuevo estándar, el BTX, que intenta ser un reemplazo del ATX, pero hasta Febrero de 2006 el formato ATX sigue siendo el estándar utilizado por la mayoría de los fabricantes de PCs[cita requerida] mientras el BTX lo han adoptado solamente los fabricantes de equipos completos como Dell, Gateway y HP.
Las especificaciones técnicas fueron publicadas por Intel en 1995 y actualizadas varias veces desde esa época, la versión más reciente es la 2.2 [1] publicada en 2004.
Una placa ATX de tamaño completo tiene un tamaño de 305 mm x 244 mm (12" x 9.6"). Esto permite que en algunas cajas ATX quepan también placas microATX.
Otra de las características de las placas ATX son el tipo de conector a la fuente de alimentación, el cual es de 20 ó 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT (sus conectores P8 y P9 mal conectados podían quemar el equipo) y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.


microATX (1996; 9.6" × 9.6" ó 244 mm × 244 mm).-microATX, también conocido como µATX y a veces referido como mATX en algunos foros de internet, es un factor de forma pequeño y estándar para placas base de ordenadores. El tamaño máximo de una placa microATX es de 244 mm × 244 mm (9.6 pulgadas × 9.6 pulgadas), siendo así el estándar ATX un 25% más grande con unas dimensiones de 305 mm × 244 mm.
Las placas base microATX disponibles actualmente son compatibles con procesadores de Intel o de AMD, pero por ahora no existe ninguna para cualquier otra arquitectura que no sea x86 o x86-64.

El estándar microATX fue explícitamente diseñado para ser compatible con ATX, por lo que los puntos de anclaje de las placas microATX son un subconjunto de los usados en las placas ATX y el panel de I/O es idéntico. Por lo tanto, las placas microATX pueden ser instaladas en cajas inicialmente diseñadas para placas ATX. Además, generalmente la mayoría de las placas microATX usan los mismos conectores de alimentación que las placas ATX, por lo que pueden ser usadas con fuentes de alimentación concebidas para placas ATX.

La mayoría de las placas ATX modernas tienen cinco o más puertos de expansión PCI o PCI-Express, mientras que las placas microATX sólo suelen tener tres puertos de expansion, siendo cuatro el número máximo permitido por la especificación. Para evitar en la medida de lo posible la ocupación de puertos y para ahorrar espacio en la caja, las placas microATX de muchos fabricantes vienen con algunos componentes (como por ejemplo la tarjeta gráfica) integrados en la misma placa, lo que facilita su utilización en equipos de reducido tamaño como los centros multimedia.
Por ejemplo, la placa Asus A8N-VM CSM (en la imagen) integra un procesador gráfico GeForce 6, audio AC97 y Ethernet gigabit, quedando libres por lo tanto los puertos de expansión que habrían sido usados para instalar una tarjeta gráfica, una tarjeta de sonido y una tarjeta Ethernet.

Mini-ITX (VIA Technologies 2003; 6.7" × 6.7" ó 170 mm × 170 mm max.; 100W max.) .-Mini-ITX es un formato de placa base totalmente desarrollado por VIA Technologies. Aunque es un formato de origen propietario, sus especificaciones son abiertas. De hecho, otros fabricantes tienen productos en este formato.

Con anterioridad a la aparición de Mini-ITX, el formato de placa base más reducido que se había definido era Micro-ATX. No obstante, no se trataba de un producto fácil de obtener en el mercado, ya que los ordenadores de pequeño tamaño no gozaban aún de interés. Por ello, el formato ATX copaba las ventas como estándar de facto.
Posteriormente, algunos fabricantes como Shuttle comenzaron a fabricar equipos de reducidas dimensiones que se dieron en llamar barebones. Estos equipos disponían de una placa base reducida, pero cuyas especificaciones no eran públicas.
Con la popularización de los equipos de reducidas dimensiones, Mini-ITX proporcionó al mercado la posibilidad de crear configuraciones "a la carta" ya que sus especificaciones son abiertas y compatibles con los componentes diseñados para ATX.

Mini-ITX propone unas dimensiones muy reducidas de placa base, tan sólo 170 mm x 170 mm (6,7 in x 6,7 in): aproximadamente el tamaño de un CD. Se trata de unas dimensiones inferiores a su antecesor micro-ATX. A pesar de ello, no es el formato más reducido existente en el mercado ya que, posteriormente, VIA definió el formato nano-ITX y Pico-ITX
Todos los interfaces y especificaciones eléctricas de la placa son compatibles con ATX. Esto significa que se pueden conectar componentes diseñados para cualquier otro tipo de PC.
Como contrapartida, las placas Mini-ITX solamente disponen de una ranura de expansión PCI y una ranura para un módulo de memoria.
Las placas Mini-ITX son generalmente refrigeradas mediante dispositivos pasivos a causa de su arquitectura de bajo consumo y son ideales para su uso como HTPC donde el ruido generado por una computadora (y en particular, por los ventiladores de refrigeración) resultaría molesto a la hora de disfrutar una película.

Naturalmente, VIA es el principal fabricante de este formato. Para ello ha diseñado sus componentes para ofrecer un producto atractivo no sólo por su tamaño. El objetivo de VIA era ocupar con este formato nichos de mercado como los HTPC y los "appliances" o "cajas negras" de bajo coste, por ejemplo, almacenamiento NAS, enrutadores de comunicaciones, etc. Esto fue posible gracias al microprocesador Eden y sus sucesores. Este microprocesador es la herencia legada por Cyrix, compañía fabricante de microprocesadores clónicos x86, que fue adquirida por VIA Technologies.
Los dos principios de diseño que inspiran Mini-ITX son:
Bajo consumo. Alrededor de los 15 vatios.
Funcionalidades integradas. Las placas mini-itx de vía integran todos los periféricos habituales: red, gráficos, conexión a la televisión, sonido 5.1, aceleración MPEG, USB, Firewire, etc.
Actualmente VIA continua haciendo evolucionar esta gama de productos y ofrece numerosas variantes de sus placas para satisfacer diferentes demandas.

Nano-ITX (VIA Technologies 2004; 120 mm × 120 mm max.) .-El Nano-ITX es un factor de forma de tarjeta madre de computador propuesto primero por VIA Technologies de Taiwán en 2004, implementado en algún momento a finales de 2005. Las tarjetas Nano-ITX miden 12cm x 12 cm, y están completamente integradas, son tarjetas madre que consumen muy poca energía con muchas aplicaciones, pero dirigidas a dispositivos de entretenimiento digital como PVRs, Set-top boxes, media center y Pcs para coche, Pcs LCD y dispositivos ultraportatiles.
Hasta ahora hay dos líneas de productos de la tarjeta madre Nano-ITX, VIA EPIA N y VIA EPIA NL. Ambas tarjetas tienen actualmente 3 velocidades de procesador: 533MHz, 800MHz y 1GHz.
BTX (Intel 2004; 12.8" × 10.5" ó 325 mm × 267 mm max.) .-El estándar BTX (Balanced Technology Extended) fue creado por Intel, como evolución del ATX La proliferación de sistemas Small Form Factor (SFF, sistemas de tamaño reducido) ha hecho evidente la necesidad de un sucesor más pequeño que ATX. El formato BTX es prácticamente incompatible con el ATX, salvo en la fuente de alimentación (es posible usar una fuente ATX en una placa BTX). Los motivos del cambio a BTX son los siguientes:
Las CPUs y las tarjetas gráficas consumen cada vez más y más potencia, y esto resulta en una mayor disipación térmica. Por otro lado, los usuarios reclaman cada vez más PCs que sean silenciosos. Las actuales cajas y placas madre ATX no fueron diseñadas para los increíbles niveles de calor que se producen en ellas. Así comienza la necesidad de un nuevo formato.
En cuestión de tamaños, hay tres tipos: picoBTX, microBTX y regularBTX, con los siguientes tamaños máximos:
picoBTX: 20.3 x 26.7 cm
microBTX: 26.4 x 26.7 cm
regularBTX: 32.5 x 26.7 cm

http://www.puntodesoporte.ws/tarjeta%20madre.htm

Ejercicio de Identificación de componentes INTEL
Ejercicio de Identificación de componentes PCChips
Ejercicio de Identificación de componentes BIOSTAR

jueves, 16 de octubre de 2008

MICROPROCESADORES

El microprocesador es un circuito integrado que contiene todos los elementos necesarios para conformar una "unidad central de procesamiento" UCP, también es conocido como CPU (por sus siglas en inglés: Central Process Unit). En la actualidad este componente electrónico está compuesto por millones de transistores, integrados en una misma placa de silicio.




Historia del microprocesador.-Han pasado más de 25 años desde que Intel diseñara el primer microprocesador, siendo la compañía pionera en el campo de la fabricación de estos productos, y que actualmente cuenta con más del 90 por ciento del mercado. Un tiempo en el que todo ha cambiado enormemente, y en el que desde aquel 4004 hasta el actual Pentium II hemos visto pasar varias generaciones de máquinas que nos han entretenido y nos han ayudado en el trabajo diario.
Dicen que es natural en el ser humano querer mirar constantemente hacia el futuro, buscando información de hacia dónde vamos, en lugar de en dónde hemos estado. Por ello, no podemos menos que asombrarnos de las previsiones que los científicos barajan para dentro de unos quince años. Según el Dr. Albert Yu, vicepresidente de Intel y responsable del desarrollo de los procesadores desde el año 1984, para el año 2011 utilizaremos procesadores cuyo reloj irá a una velocidad de 10 GHz (10.000 MHz), contendrán mil millones de transistores y será capaz de procesar cerca de 100 mil millones de instrucciones por segundo. Un futuro prometedor, que permitirá realizar tareas nunca antes pensadas.

TIPOS DE MICROPROCESADORES:

PENTIUM o PENTIUM I:
Intel Pentium es una gama de microprocesadores de quinta generación con arquitectura x86 producidos por Intel Corporation.
El primer Pentium se lanzó al mercado el 22 de marzo de 1993, con velocidades iniciales de 60 y 66 MHz, 3.100.000 transitores, cache interno de 8 KB para datos y 8 KB para instrucciones; sucediendo al procesador Intel 80486. Intel no lo llamó 586 debido a que no es posible registrar una marca compuesta solamente de números
Pentium también fue conocido por su nombre clave P54C, Se comercializó en velocidades entre 60 y 133 mhz, con velocidad de bus de 50,60 y 66mhz. Las versiones que incluian instrucciones MMX no solo brindaban al usuario un mejor manejo de aplicaciones multimedia ,como por ejemplo, la lectura de peliculas en DVD si no que se ofrecian en velocidades de hasta 200mhz y la mas basica proporcionaba unos nada malos 166mhz de relój.
La aparición de este procesador se llevó a cabo con un movimiento economico impresionante, acabando con la competencia que hasta entonces producia procesadores equivalentes, como es el 80386,el 80486 y sus variaciones o incluso NPUs. Las siguientes empresas fueron afectadas por la aparición del Pentium:
Advanced Micro Devices,Mejor conocida como AMD...Tuvo que crear sus procesadores desde cero. este es, el K5 y el K6 (A estos procesadores se los bautizó asi debido a que "K" significa Kriptonita, y como se sabe, la Kriptonita debilita a el super-heroe de historietas y peliculas Superman esto es en consecuencia a lo que le hizó Intel a sus competidores con la aparición de Pentium)
Cyrix, que producía muy buenos 486, luego fue adquirida por VIA
Harris
LU-MATH
Estas ultimas dos no fueron muy conocidas aunque sus versiones de procesadores de alto rendimiento (como el Harris 80386) llegaron tarde y lamentablemente no pudieron hacerse un hueco en el mercado.
Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez gracias a sus dos pipeline de datos de 32bits cada uno, uno equivalente a el 486DX(u) y el otro equivalente a 486SX(u),Ademas, poseía un bus de datos de 64 bits, permitiendo un acceso a memoria 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas y los registros tambien eran de 32 bits).
Se comercializaron versiones de entre 60 MHz y 133 MHz, con velocidades Front Side Bus (FSB) de 50, 60 y 66 MHz.

PENTIUM PRO:
El Pentium Pro es la sexta generación de arquitectura x86 de los microprocesadores de Intel, cuya meta era remplazar al Intel Pentium en toda la gama de aplicaciones, pero luego se centró como chip en el mundo de los servidores y equipos de sobremesa de gama alta. Posteriormente Intel lo dejó de lado a favor de su gama de procesadores de altas prestaciones llamada Xeon.
Fue puesto a la venta en noviembre de 1995. En su lanzamiento usaba un enorme Socket 8 de forma rectangular.


PENTIUM II:
El Pentium II es un microprocesador con arquitectura x86 diseñado por Intel, introducido en el mercado el 7 de mayo de 1997. Está basado en una versión modificada del núcleo P6, usado por primera vez en el Intel Pentium Pro.
Los cambios fundamentales respecto a éste último fueron mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste.
El Pentium II se comercializó en versiones que funcionaban a una frecuencia de reloj de entre 166 y 450 MHz. La velocidad de bus era originalmente de 66 MHz, pero en las versiones a partir de los 333 MHz se aumentó a 100 MHz.
Poseía 32 KB de memoria caché de primer nivel repartida en 16 KB para datos y otros 16 KB para instrucciones. La caché de segundo nivel era de 512 KB y trabajaba a la mitad de la frecuencia del procesador, al contrario que en el Pentium Pro, que funcionaba a la misma frecuencia.
Como novedad respecto al resto de procesadores de la época, el Pentium II se presentaba en un encapsulado SEC, con forma de cartucho. El cambio de formato de encapsulado se hizo para mejorar la disipación de calor. Este cartucho se conecta a las placas base de los equipos mediante una ranura Slot 1.
El Pentium II integra 7,5 millones de transistores. El siguiente procesador de la familia Pentium es el Pentium III.
PENTIUM III:
El Pentium III es un microprocesador de arquitectura i686 fabricado por Intel; el cual es una modificación del Pentium Pro. Fue lanzado el 26 de febrero de 1999.
Las primeras versiones eran muy similares al Pentium II, siendo la diferencia más importante la introducción de las instrucciones SSE. Al igual que con el Pentium II, existía una versión Celeron de bajo presupuesto y una versión Xeon para quienes necesitaban de gran poder de cómputo. Esta línea ha sido eventualmente reemplazada por el Pentium 4, aunque la línea Pentium M, para equipos portátiles, esta basada en el Pentium III.
Existen tres versiones de Pentium III: Katmai, Coppermine y Tualatin.

PENTIUM 4:
El Pentium 4 es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primer microprocesador con un diseño completamente nuevo desde el Pentium Pro de 1995. El Pentium 4 original, denominado Willamette, trabajaba a 1,4 y 1,5 GHz; y fue lanzado en noviembre de 2000.
Para la sorpresa de la industria informática, el Pentium 4 no mejoró el viejo diseño P6 según las dos tradicionales formas para medir el rendimiento: velocidad en el proceso de enteros u operaciones de coma flotante. La estrategia de Intel fue sacrificar el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE. Al igual que la Pentium II y la Pentium III, el Pentium 4 se comercializa en una versión para equipos de bajo presupuesto (Celeron), y una orientada a servidores de gama alta (Xeon).
Las distintas versiones son: Willamette, Northwood, Extreme Edition, Prescott y Cedar Mill.
PENTIUM D:
Los procesadores Pentium D fueron introducidos por Intel en el Spring 2005 Intel Developer Forum. Un chip Pentium D consiste básicamente en 2 procesadores Pentium 4 metidos en un solo encapsulado (2 nucleos Prescott para el core Smithfield y 2 nucleos Cedar Mill para el core Presler) y comunicados a traves del FSB, (en otras palabras es un dual core no monolítico) con un proceso de fabricación inicialmente de 90 nm y en su segunda generación de 65 nm. El nombre en clave del Pentium D antes de su lanzamiento era "Smithfield". Hubo un rumor que decía que estos chips incluían una tecnología DRM (Digital rights management) para hacer posible un sistema de protección anticopia de la mano de Microsoft, lo cual Intel desmintió, si bien aclarando que algunos de sus chipsets si tenían dicha tecnología, pero no en la dimensión que se había planteado.
Existen cinco variantes del Pentium D:
Pentium D 805, a 2,6 GHz (el único Pentium D con FSB de 533 MHz)
Pentium D 820, a 2,8 GHz con FSB de 800 MHz
Pentium D 830, a 3,0 GHz con FSB de 800 MHz
Pentium D 840, a 3,2 GHz con FSB de 800 MHz
Pentium D Extreme Edition, a 3,2 GHz, con Hyper Threading y FSB de 800 MHz.
Nota: no confundir con el Pentium 4 Extreme Edition, a 3,73 GHz, que únicamente posee un único núcleo (Prescott).
Cada uno de ellos posee dos núcleos Prescott conformando así el core Smithfield, están fabricados en un proceso de 90 nm, con 1 MB de memoria caché L2 para cada núcleo. Todos los Pentium D incluyen la tecnología EM64T, que les permite trabajar con datos de 64 bits nativamente e incluyen soporte para la tecnología Bit NX. Las placas base que los soportan son las que utilizan los chipsets 101, 102, 945, 946, 965 y 975.
Actualmente se han añadido otras once variantes del Pentium D, estas son:
Pentium D 915, a 2,8 GHz con FSB de 800 MHz
Pentium D 920, a 2,8 GHz con FSB de 800 MHz
Pentium D 925, a 3,0 GHz con FSB de 800 MHz
Pentium D 930, a 3,0 GHz con FSB de 800 MHz
Pentium D 935, a 3,2 GHz con FSB de 800 MHz
Pentium D 940, a 3,2 GHz con FSB de 800 MHz
Pentium D 945, a 3,4 GHz con FSB de 800 MHz
Pentium D 950, a 3,4 Ghz con FSB de 800 MHz
Pentium D 960, a 3,6 Ghz con FSB de 800 MHz
Pentium D 955 Extreme Edition, a 3,466 con Hyperthreading, un FSB de 1066 MHz y una caché de 2 MB L2 en cada nucleo.
Pentium D Extreme Edition 965, a 3,73GHz con Hyperthreading, un FSB de 1066 MHz FSB y cache de 2 MB L2 en cada núcleo.
Cada uno de ellos posee dos núcleos Cedar Mill, conformando así el core Presler, están fabricados en un proceso de 65 nm con 2 MB de memoria caché L2 para cada núcleo. Todos los 9x5 se les denomina así porque éstos no contienen (salvo en la serie Extreme Edition) la tecnología Intel de virtualización (Intel VT), que se diferencia por permitir la Virtualización por hardware, similar a la AMD-V (AMD Virtualization).
CORE 2 DUO o Pentium Dual Core:
El procesador Intel Pentium Dual Core es parte de la familia de microprocesadores creados por la empresa Intel, que utilizan la tecnología de doble núcleo, y fue lanzado después de la serie de procesadores Pentium D y primeras ediciones del Core 2 Duo.
Fue diseñado para trabajar en entornos móviles (Laptops) y en equipos de escritorio (Desktops), permitiendo la ejecución de aplicaciones múltiples, a un bajo costo, un bajo consumo energético y sin sacrificar el desempeño de la computadora. Este procesador es un Core 2 Duo, pero en su lanzamiento fue llamado Pentium Dual Core.
Posee una memoria de cache de 2° nivel de 1 MB (L2 Cache), un bus frontal de 533 MHz para equipos portátiles y 800 MHz para desktops. Tiene la posibilidad de trabajar a 64 bits.

Avanses del Microprocesador:
A principios de 2006, Intel presenta sus últimos procesadores orientados a negocios, diseño y juegos, con procesadores de dos y cuatro núcleos y velocidades de 1,7; 1,8; 2,1; 2,4; 2,5; 2,66; 2,83; 3,0 Ghz. Aunque los precios del procesador de 4 núcleos (QuadCore) aún es muy alto, es la muestra clara de que Intel seguirá al futuro incrementando los núcleos del procesador para aumentar velocidad y rendimiento multimedia. En Mayo de 2007, en televisión vía satélite, Intel presentó un equipo que incluía un procesador de 80 núcleos que, según los informantes del evento, es el prototipo de los procesadores Intel para 2012.

lunes, 13 de octubre de 2008

MEMORIAS RAM

LA MEMORIA RAM


Concepto.- la memoria principal o RAM (Randon Acces Memory) es donde el computador guarda los datos que esta utilizando en el momento presente. El almacenamiento es considerado temporal porque los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.


TIPOS DE MEMORIA RAM:

*Memorias SIMM (siglas de Single In-line Memory Module), un tipo de encaosulado consistente en una pequeña placa de circuito impreso que almacena chips de memoria, y que se inserta en un zócalo SIMM en la placa base o en la placa de memoria. Los contactos en ambas caras son redundantes, lo que es la mayor diferencia respecto de sus sucesores los DIMMs.

  • Consta de 30 contactos y meneja 8 bits
  • Se utilizan en las computadoras 386 y 486
  • Venian en modulos de 256 Kbytes, 1 Mbyte y 4 Mbytes
  • Trabaja con una tension de 5 voltios.



*Memorias SIMM de 72 Contactos:

  • Consta de 72 contactos y maenja hasta 32 bits
  • se utilizan en las computadoras 486, 586, K6-II, K6III, Celeron, pentium y pentium II
  • su capacidad es de 4 Mbytes, 8 Mbytes, 16 Mbytes, 32 Mbytes y 64 Mbytes
  • trabaja con una tension de 5 voltios





*Memorias DIMM(DUAL IN-LINE MEMORY MODULE) Modulo de Memoria en Linea:

DIMM son las siglas de «Dual In-line Memory Module» y que podemos traducir como Módulo de Memoria lineal doble. Las memorias DIMM comenzaron a reemplazar a las SIMMs como el tipo predominante de memoria cuando los microprocesadores Intel Pentium dominaron el mercado.
Son módulos de memoria RAM utilizados en ordenadores personales. Se trata de un pequeño circuito impreso que contiene chips de memoria y se conecta directamente en ranuras de la placa base. Los módulos DIMM son reconocibles externamente por poseer sus contactos (o pines) separados en ambos lados, a diferencia de los SIMM que poseen los contactos de modo que los de un lado están unidos con los del otro.
Un DIMM puede comunicarse con el PC a 64 bits (y algunos a 72 bits) en vez de los 32 bits de los SIMMs.

  • consta de 168 contactos y 64 bits

  • estan disponibles en capacidades 8 Mbytes, 16 Mbytes, 32 Mbytes, 64 Mbytes, 128 Mbytes, 256 Mbytes, 512 Mbytes.

  • trabajan con un voltaje de 3.3 voltios y 5 voltios

  • velocidad 266 y 333 Mgz
  • pentium III


*Memorias DIMM DDR(DOBLE DATA RATE)Doble Velocidad de Datos de 184 Pines:
DDR, Double Data Rate, significa memoria de doble tasa de transferencia de datos en castellano. Son módulos compuestos por memorias síncronas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDRs soportan una capacidad máxima de 1 GiB.
Fueron primero adoptadas en sistemas equipados con procesadores AMD Athlon. Intel con su Pentium 4 en un principio utilizó únicamente memorias RAMBUS, más costosas. Ante el avance en ventas y buen rendimiento de los sistemas AMD basados en DDR SDRAM, Intel se vio obligado a cambiar su estrategia y utilizar memoria DDR, lo que le permitió competir en precio. Son compatibles con los procesadores de Intel Pentium 4 que disponen de un FSB (Front Side Bus) de 64 bits de datos y frecuencias de reloj desde 200 a 400 MHz.
También se utiliza la nomenclatura PC1600 a PC4800, ya que pueden transferir un volumen de información de 8 bytes en cada ciclo de reloj a las frecuencias descritas.
Un ejemplo de calculo para PC-1600: 100 MHz x 2 Datos por Ciclo x 8 B = 1600 MiB/s
Muchas placas base permiten utilizar estas memorias en dos modos de trabajo distintos: Single Memory Channel: Todos los módulos de memoria intercambian información con el bus a través de un sólo canal, para ello sólo es necesario introducir todos los módulos DIMM en el mismo banco de slots. Dual Memory Channel: Se reparten los módulos de memoria entre los dos bancos de slots diferenciados en la placa base, y pueden intercambiar datos con el bus a través de dos canales simultáneos, uno para cada banco.

  • tiene 184 contactos del mismo tamaño fisico de las de 168 contactos

  • trabaja con un voltaje 2.5 voltios y 1.8 voltios

  • a diferencia de las de 168 contactos tiene 2 ranuras de sujecion y una ranura para instalar al slot

  • salieron con las pentium IV y trabaja con 64 bits hasta las DDR III.

*Memorias DIMM DDR2 de 240 Pines:
DDR2 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la DRAM.
Los módulos DDR2 son capaces de trabajar con 4 bits por ciclo, es decir 2 de ida y 2 de vuelta en un mismo ciclo mejorando sustancialmente el ancho de banda potencial bajo la misma frecuencia de una DDR SDRAM tradicional (si una DDR a 200 MHz reales entregaba 400 MHz nominales, la DDR2 por esos mismos 200 MHz reales entrega 800 MHz nominales). Este sistema funciona debido a que dentro de las memorias hay un pequeño buffer que es el que guarda la información para luego transmitirla fuera del modulo de memoria, este buffer en el caso de la DDR convencional trabajaba tomando los 2 bits para transmitirlos en 1 sólo ciclo, lo que aumenta la frecuencia final. En las DDR2, el buffer almacena 4 bits para luego enviarlos, lo que a su vez redobla la frecuencia nominal sin necesidad de aumentar la frecuencia real de los módulos de memoria.
Las memorias DDR2 tienen mayores latencias que las conseguidas con las DDR convencionales, cosa que perjudicaba su rendimiento. Reducir la latencia en las DDR2 no es fácil. El mismo hecho de que el buffer de la memoria DDR2 pueda almacenar 4 bits para luego enviarlos es el causante de la mayor latencia, debido a que se necesita mayor tiempo de "escucha" por parte del buffer y mayor tiempo de trabajo por parte de los módulos de memoria, para recopilar esos 4 bits antes de poder enviar la información.

  • tiene 240 pines y duplica la cantidad de datos utilizando 2 reloes
  • velocidades desde 400 Mhz hasta 667 Mhz, capacidad hasta 1 Gbyte

  • pentium IV y dual core

Caracteristicas:

Las memorias DDR2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias.

Operan tanto en el flanco alto del reloj como en el bajo, en los puntos de 0 voltios y 1.8 voltios, lo que reduce el consumo de energía en aproximadamente el 50 por ciento del consumo de las DDR, que trabajaban a 0 voltios y a 2.5.

Terminación de señal de memoria dentro del chip de la memoria ("Terminación integrada" u ODT) para evitar errores de transmisión de señal reflejada.


Mejoras operacionales para incrementar el desempeño, la eficiencia y los márgenes de tiempo de la memoria.

Latencia CAS: 3, 4 , 5 ,6 , 7

Tasa de transferencia desde 400 hasta 1024 MiB/s y capacidades de hasta 2x2 GiB actualmente.
Su punto en contra son las latencias en la memoria más largas (casi el doble) que en la DDR.

Algunas marcas de estas memorias son: STD, Transcend, Kingston, Buffalo, NEC, Elixir, Vdata, TRCND, OCZ, Corsair, G. Skill, Mushkin.


Memorias DIMM DDR 3:

DDR 3 es el nombre del nuevo estándar DDR, que viene siendo el sucesor del DDR 2.
En febrero, Samsung Electronics anunció un chip prototipo de 512 MiBa 1066 MHz (La misma velocidad de bus frontal del Pentium 4 Extreme Edition más rápido) con una reducción de consumo de energía de un 40% comparado con los actuales módulos comerciales DDR 2, debido a la tecnología de 80 nanómetros usada en el diseño del DDR 3 que permite más bajas corrientes de operación y voltajes (1,5 V, comparado con 1,8 del DDR 2 ó 2,5 del DDR). Dispositivos pequeños, ahorradores de energía, como computadoras portátiles quizás se puedan beneficiar de la tecnología DDR 3.
Teóricamente, estos módulos pueden transferir datos a una tasa de reloj efectiva de 800-1600 MHz, comparado con el rango actual del DDR 2 de 533-800 MHz ó 200-400 MHz del DDR. Existen módulos de memoria DDR y DDR 2 de mayor frecuencia pero no estandarizados por JEDEC.
Los DIMMS DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca.
La memoria GDDR 3, con un nombre similar pero con una tecnología completamente distinta, ha sido usada durante varios años en tarjetas gráficas de gama alta como las series GeForce 6x00 ó ATI Radeon X800 Pro, y es la utilizada como memoria principal del Xbox 360. A veces es incorrectamente citada como "DDR 3".
Los módulos más rápidos de tecnología DDR 3 ya están listos al mismo tiempo que la industria se preparara para adoptar la nueva plataforma de tecnología.
Ensambladores como Nvidia, ya están empezando a implementar la GDDR5 en sus nuevas tarjetas gráficas GT300 de momento estanco en los 4000Mhz (2000Mhz DDR). La GDDR4 que intento lanzar Ati con la X1950XTX fue un lamentable fracaso.
Kingston Technology Company, Inc, el fabricante de memoria independiente líder del mundo, ha anunciado el lanzamiento de HyperX 1.375 MHz y ValueRAM 1.066 MHz, módulos de memoria de acceso dinámico sincrónico DDR 3, pionero en la memoria tecnológica.
Considerado el sucesor de la actual memoria estándar DDR 2, DDR 3 promete proporcionar significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo.
Además, Kingston comercializará módulos ValueRAM 1.333 MHz DDR 3 para que coincida con la placa base X3 que se lanzará durante este verano.
“Como líderes de la industria gracias a nuestra línea de productos HyperX 1.375 MHz, Kingston puede producir la memoria más rápida para usuarios entusiastas y profesionales”, asegura JK Tsai, director del Grupo de Recursos de Tecnología de Kingston Techonology. “Introducir tecnología revolucionaria como la DDR 3 para dar soporte a la nueva placa base –nuestro ValueRAM 1.066 MHz aún no está disponible en el mercado- y a los chipsets es un gran logro para nuestro grupo de ingenieros.
Muchas compañías de placas madre han probado la memoria DDR 3 de Kingston en sus laboratorios y están muy satisfechos con el resultado”.
“Kingston ha trabajado conjuntamente con Asus, Gigabyte y otras empresas fabricantes de placas base durante el proceso de prueba del HyperX 1.375 MHz”, afirma Mark Tekunoff, director senior de Tecnología de Kingston Technology. “Hemos seleccionado y producido con éxito cantidades de memoria DRR3 a 1.375 MHz, porporcionando a los usuarios de esta tecnología la oportunidad de probar la nueva placa madre en algunos de los niveles más altos de rendimiento disponibles. Muchas de las placas base que se mostraron en Computex 2007, basadas en los nuevos chipsets P35, ahora utilizan la tecnología DDR 3”.
Se prevé que la tecnología DDR 3 sea dos veces más rápida que la DDR 2, la memoria con mayor velocidad hoy en día, y el alto banda ancha que prometió ofrecer DDR 3 es la mejor para la combinación de un sistema dual y procesadores "quad core". El voltaje más bajo del DDR 3 (HyperX 1,7 V versus 1,8 V con DDR 2 y ValueRAM 1,5 V versus 1.8v con DDR 2) ofrece una solución térmica más eficaz para los ordenadores actuales y para las futuras plataformas móviles y de servidor.
Los módulos DDR3 de Kingston están disponibles en capacidades de entre 512 MiB y 1 GiB, así como mediante kits de memoria de 1 a 2 GiB.

  • alcanza velocidades de 1033 Mhz y capacidades hasta 2 Gbytes

  • hay a partir de 512 Mbytes


Memoria CACHE:

La memoria caché es una clase de memoria RAM estática (SRAM) de acceso aleatorio y alta velocidad, situada entre el CPU y la RAM; se presenta de forma temporal y automática para el usuario, que proporciona acceso rápido a los datos de uso más frecuente.
La ubicación de la caché entre el microprocesador y la RAM, hace que sea suficientemente rápida para almacenar y transmitir los datos que el microprocesador necesita recibir casi instantáneamente.
La memoria caché es rápida
, unas 5 ó 6 veces más que la DRAM (RAM dinámica), por eso su capacidad es mucho menor.Por eso su precio es elevado, hasta 10 ó 20 veces más que la memoria principal dinámica para la misma cantidad de memoria.

La utilización de la memoria caché se describe a continuación:

Acelerar el procesamiento de las instrucciones de memoria en la CPU.

Los ordenadores tienden a utilizar las mismas instrucciones y (en menor medida), los mismos datos repetidamente, por ello la caché contiene las instrucciones más usadas.

Por lo tanto, a mayor instrucciones y datos la CPU pueda obtener directamente de la memoria caché, tanto más rápido será el funcionamiento del ordenador.

Composicion interna.-La memoria caché está estructurado por celdas, donde cada celda almacena un byte. La entidad básica de almacenamiento la conforman las filas, llamados también líneas de caché. Por ejemplo, una caché L2 de 512 KB se distribuye en 16.384 filas y 32 columnas
Cuando se copia o se escribe información de la RAM por cada movimiento siempre cubre una línea de caché.
La memoria caché tiene incorporado un espacio de almacenamiento llamado Tag RAM, que indica a qué porción de la RAM se halla asociada cada línea de caché, es decir, traduce una dirección de RAM en una línea de caché concreta.

Diseño.-En el diseño de la memoria caché se deben considerar varios factores que influyen directamente en el rendimiento de la memoria y por lo tanto en su objetivo de aumentar la velocidad de respuesta de la jerarquía de memoria. Estos factores son las políticas de ubicación, extracción, reemplazo, escritura y el tamaño de la caché y de sus bloques.


www.wikipedia.com